Product & Services

Based on an Innovative Platform Technology for Screening in Mammalian Cells

Our Customers

We are providing our solid-phase transfection (STF) plates in cellular research for

- 1 facilitating target discovery and alternative pathway analysis
- 2 RNA-i based compound filing for designing rational combination of drugs

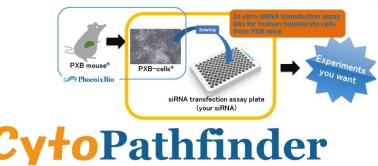
Our potential customers would be Researchers who have problem such as - we have no suitable method to transfect into our target cell

also who have expectation such as

- we want to convert actual viral method to non viral

- we want to conduct large scale high-throughput screening more efficiently by small number of staff
- we want to conduct gene editing research work in house in stead of outsourcing.

Our Products and services


- siRNA / miRNA / Plasmid DNA (supplied from clients)
 - Plates for sale for use in customer laboratory
 - Transfection Optimisation plates
 - Customised experimental plates
 - Fee for service research in Tokyo laboratory
 - Technology transfer to customers own facility
- Non viral method of Gene Editing using CRISPR Cas9 System

 (Cas9 and g-RNA are supplied from clients)

Types of solid-phase CRISPR / Cas9 plates (including under development)

Cas9	gRNA		
	Plasmid	RNA	
Cas9-introduced cells	Kits for plasmid	Kits for RNA	
plasmid	Kits for plasmid	under development	
mRNA	under development	under development	

 In vitro siRNA transfection assay kits for human hepatocyto cells from PXB mice

How to use our products for screening processes?

Steps

Transfection condition screen

Assay Development

Screening

Objectives

- •To find several Solid-phase transfection candidate conditions for target cells
- •To find appropriate culture condition for seeding (ie. Serum-free treatment, Seeding density, culture time, etc.)
- •To find the best transfection condition under appropriate assay methods for screen
- •To find siRNA assay controls for screen
- •To find appropriate culture condition for screen

Cutdown

Products

Name: Transfection Optimization Kit

Transfection Optimization plate contents;

- •For Hs/Ms/Rn species
- •384 plate (standard : Corning#3712)
- •Freezer storage (at least 1 yr.)
- •ca.140 compositions/plate
 - ✓Transfection reagents (types & conc.)
 - √siRNA conc.
 - ✓ siRNA (Negative & CytoTox siRNA)
 - ✓ Accelerator conc.

Name: Customized plate

Customized points;

- Free layout
- •Can use various manufacture's siRNA/miRNA (Ambion, Dharmacon, Qiagen, etc.; negatively charged)
- •Can use various types of plate (6, 96, 384, 1536well, PDL/PLL-coated, etc.)
- •Variable number of replica plates
- •Freezer storage (at least 1 yr.)

Nucleic acid resources

CytoPathfinder will provide

Client will provide (Basically)

Assays

Viability assays;

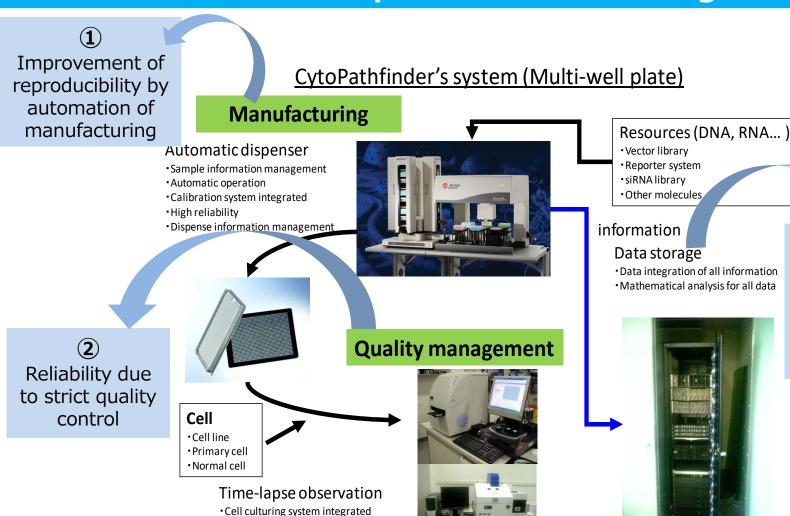
- Luminescence (recommended)
 (Promega CellTiter-Glo, PE ATPLite, etc.)
- •Fluorescence
 - (Promega CellTiter-Blue, etc.)
- Absorbance
 - (MTT, WST assay)
- •Image-based assay
 - (GE INCell analyzer, PE Opera, etc.)
- *CytoPathfinder will provide the analysys software (Excel macro)

- Various assays;
 •qPCR
- Western blot
- Reporter assay
- •ELISA
- Image-based assay
- ...etc.

Innovative tools in vitro study compared to actual method

Try & error by specialist

CytoPathfinder's TF plate


Ţ

Easy and effective

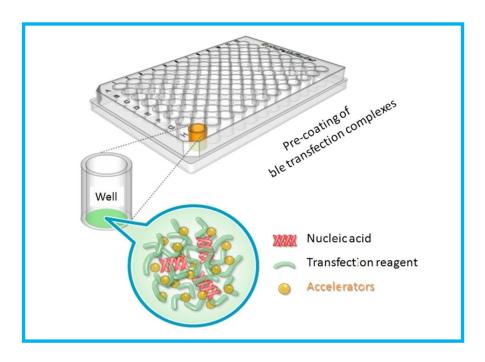
Reducibility and Reliability

Data set for drug discovery research and medical research

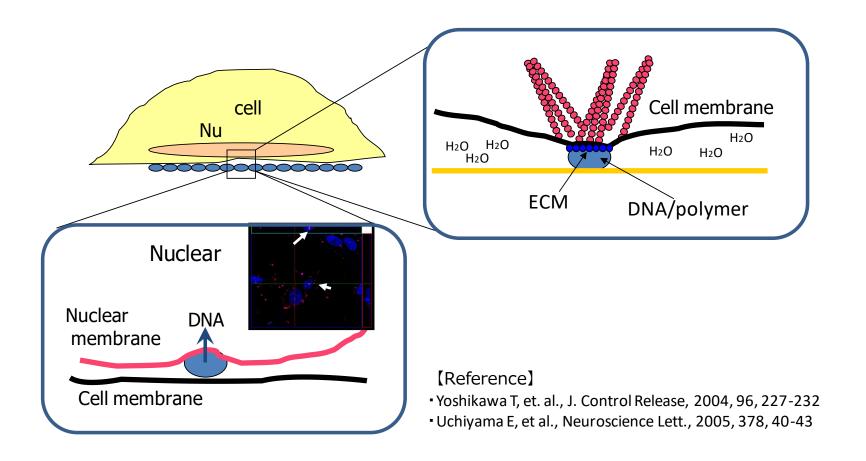
Automated system for STF plate manufacturing

Auto-focus unit integrated

Automatic data acquisition software
 High resolution image acquisition

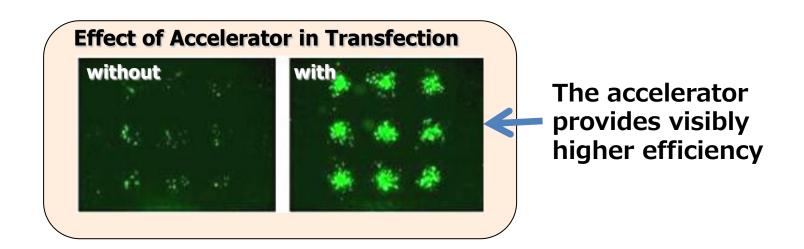

Experimental condition setting based on accumulated data

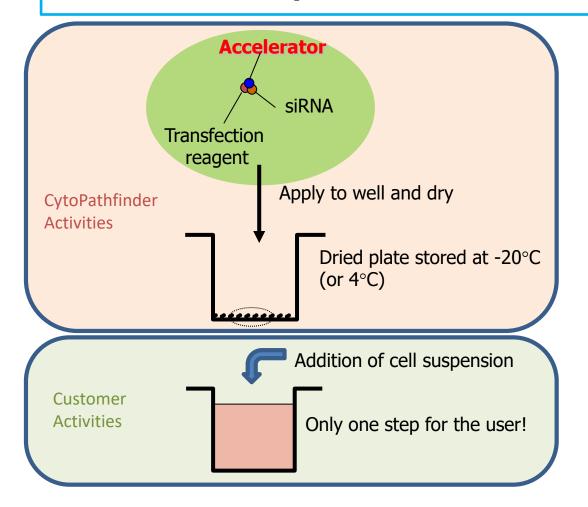
Our technology


Our solid-phase transfection is a new non-viral gene transfer method which introduces nucleic acids via the cell adhesion surface.

In our solid -phase method, various nucleic acids, transfection reagents and our patented accelerator are dried up as a non -covalently bound complex on the bottom surface of SBS standard micro plates.

Our technology - Principles of Technology-

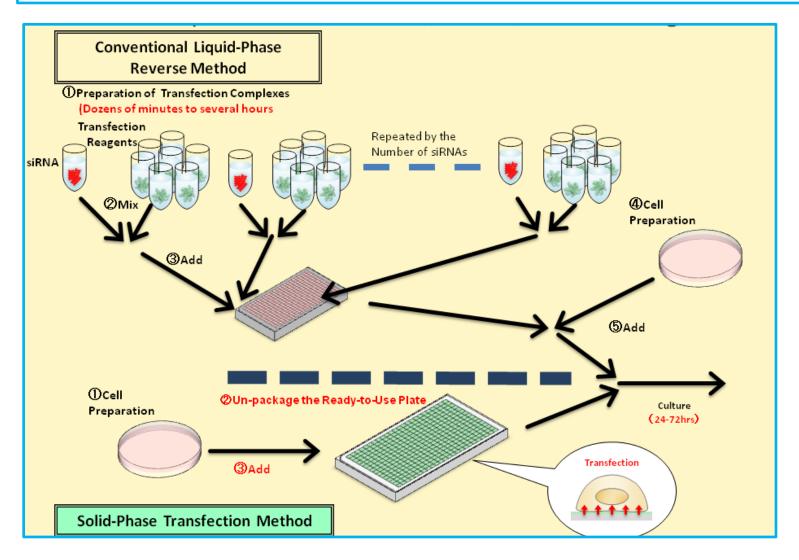

- Enhanced solid-phase transfection efficiency with proprietary accelerators and accumulated know-how
- Simple to use methodology/simpler transfection process
- Varied formats possible
- Simple optimisation process
- Excellent reproducibility and reliability
- Reliable results with hard-to-transfect cells
- Fewer cells needed per assay
- Dual knockdown easily achievable


Time, cost saving for getting reliable data

Enhanced Transfection Efficiency

- Patented accelerator increases rate and extent of transfection
 - Stabilises transfection complexes
 - Enhances uptake of complexes by cells
 - More cells transfected, less variability
- Facilitates well-to-well reproducibility

Simple to Use Methodology



CytoPathfinder supply Plates with the siRNA, transfection reagent and accelerator dried on the bottom of the wells.

Plates are stable for at least 12 months.

Customers simply add cells, incubate and read their preferred endpoint.

Simple Process- Time, Labor, Cost saving

Time saving

Conventional methods: (multiple try & error experiments)

Low efficiency High toxicity

High efficiency Low toxicity

 \sim 6 months

STF:

Low efficiency High toxicity

High efficiency Low toxicity

 \sim 1 month

Cost saving

Conventional methods

Downsizing by STF methods

- Cell
- •Gene
- Medium
- ·etc.

 \sim 1/1000 volume

·Human resource

 \sim 1/10 resource

Advantage over conventional method Varied Formats Possible

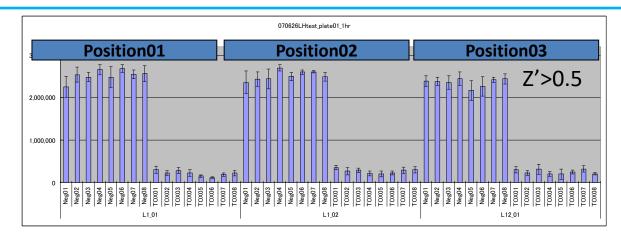
Wells facilitate high-throughput screening

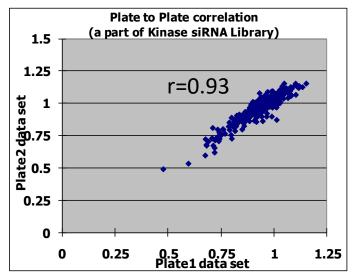
·96,384 ,1536 well plates as standard

6 well plate for gene /cell therapy (under development)

Simple Optimisation Process

- Optimisation plate with wide range of permutations used to select conditions prior to full screening
 - Major bottleneck in other siRNA methods
- Efficiency and toxicity assessed using lethal and non-coding siRNAs

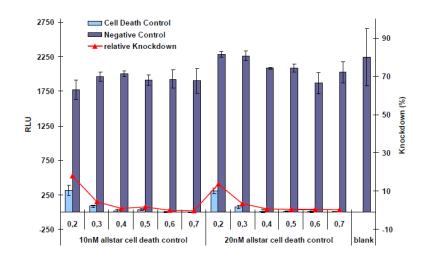

Variables: (materials)


Over one hundred and forty conditions can be tested on a single plate.

- ✓ Nucleic acid concentration
- ✓TF reagents; type & concentration
- ✓ Buffers
- Once optimal conditions selected, experimental plates produced by CytoPathfinder using siRNA library chosen by the customer

Excellent reproducibility and reliability

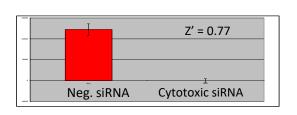
Plates

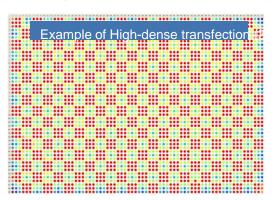


- Plate to plate correlation > 0.9
- Z' values > 0.8 readily achievable

Reliable results with hard-to-transfect Cells

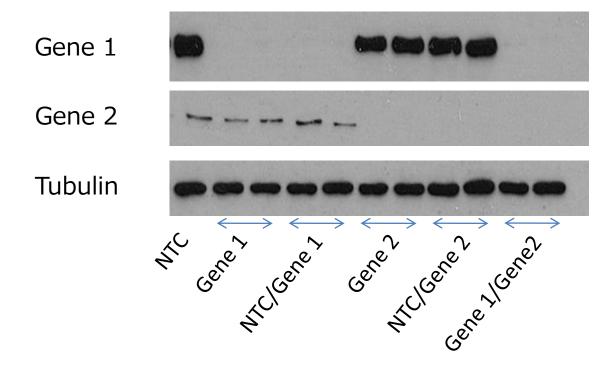
- Use of the accelerator also increases transfection in hard-to-transfect cells
- Allows excellent transfection with maintained cell viability
 - For example, human bronchial/tracheal epithelial cells




Fewer Cells per Assay

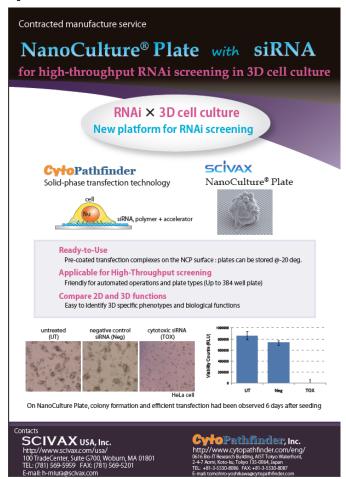
High transfection efficiency permits dense formats:

✓ 384 well plates
✓ 1536 well plates
✓ 3456 well plates
3,000 cells/well
500 cells/well
1-200 cells/well


- Allows broader gene analysis with scarce cells
 - ✓ Primary cells
 - ✓ Human tumour cells with low passage number

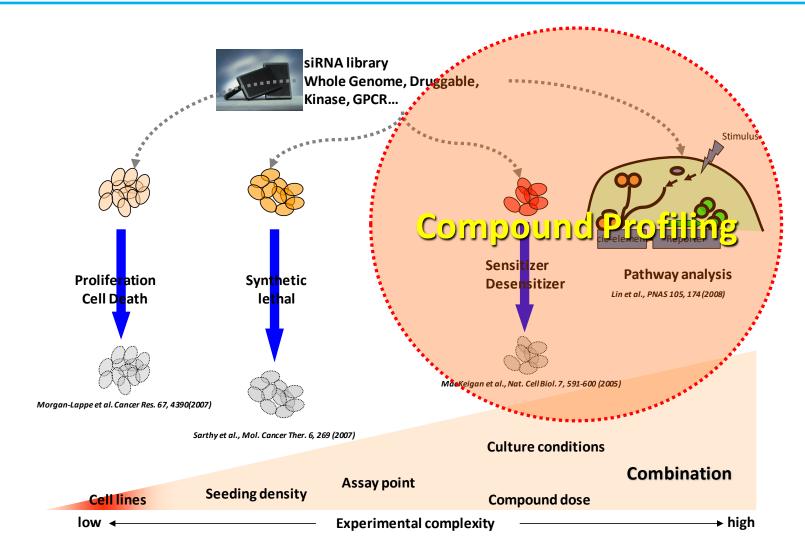
Dual Knockdown Easily Achievable

- ◆ Western blot showing knockdown of Gene 1 and Gene 2 separately and together (plus non-targeting control RNA – NTC)
- Effectiveness retained in dual knockdown



Solid-phase transfection combined with cutting-edge technologies

Explore ncRNA functional screening


miRNA mimics library Milen (H) GeneDesign, Inc. One-Step Micro RNA Solid-phase & **Mimics Transfection** Library Plate Ready Single Tube or Hela Cell viability with miRNAs **Plate Supply** 250 miRBase ver.18 **Human & Mouse** trial 1 trial 2 Scale Up and Labeling Just "seed" and watch! Enjoy high efficient miRNA transfection today! For miRNA mimics: 7-7-20 Saitoasagi, Ibaraki, Osaka 567-0085 GeneDesign, Inc. Phone: +81-72-640-5180

Explore 2D/3D functional screening

Compound profiling; understanding complex cellular system

Advantage over conventional method -Summary-

	chemicai			physical	biological
method	Our STF	STF Liquid phase forward rev		Electroporation	Virus vector
reproducibility	high	low~medium	high(in case of automatic)	low	low~medium
Availability for hard to transfect cells	nigh (induced pluripotent stem cell,embryonic stem cell,hepatocyte, stem cell isolated from body tissue, primary cell, floating cell)	ow∼medium	low~medium	high(primary stem cells etc)	high
Transfection efficiency	same level as reverse method or higher	nedium	Medium~high	high	high
Preparation of sample	Only add cells	:omplex	automation	Device needed	complex
Selection of optimization condition	Simple selection using optimization plates	ry and error	Try and error	Try and error	Try and error
Varied formats	Available max1,536well		Max density384 well	impossible	
Minimize number of cells	1,536 well, 500cells/well	384well, 3,000cells/well	384 well, 3,000cells/well	impossible	impossible
Double knockdown	available	mpossible	impossible	difficult	difficult
storage	possible (12 months at-20°C)	mpossible	impossible		
Scale of library	small~large	small	small~large (in case of automation)	small~large	small
others				Low viability of cells Damage of nucleic acid	Contamination, insertion mutation, inactivity by immunity

1 record of STF into Cell Line

type	name	tissue / disease	nuecleic asid
adherent	HeLa	cervix / adenocarcinoma	siRNA, Plasmid, RNA aptamer
adherent	T-47D	mammary gland, breast / ductal carcinoma	siRNA
adherent	SK-BR-3	mammary gland, breast / adenocarcinoma	siRNA
adherent	MCF7	mammary gland, breast / adenocarcinoma	siRNA, Plasmid, RNA aptamer
adherent	MDA-MB-231	mammary gland, breast / adenocarcinoma	siRNA
adherent	MDA-MB-435S	mammary gland, breast / ductal carcinoma	siRNA
adherent	HEK-293	embryonic kidney	siRNA, Plasmid
adherent	HEK-293T	embryonic kidney	siRNA, Plasmid
adherent	Caco-2	colon / colorectal adenocarcinoma	siRNA
adherent	HCT116	colon / colorectal adenocarcinoma	siRNA
adherent	SW480	colon / colorectal adenocarcinoma	siRNA
adherent	HepG2	liver / hepatocellular carcinoma	siRNA, Plasmid
adherent	NT2 (NTERA-2)	testis / malignant pluripotent embryonal carcinoma	siRNA, Plasmid
adherent	NIH/3T3	embryo	siRNA, Plasmid, RNA aptemer
adherent	3T3-L1	embryo	siRNA, RNA aptemer
adherent	MDCK	kidney / normal	siRNA
adherent	Malme-3M	lung / malignant melanoma	siRNA
adherent	SK-MEL-28	skin / malignant melanoma	siRNA
adherent	SK-MEL-5	skin / malignant melanoma	siRNA
adherent	A-375	skin / malignant melanoma	siRNA
adherent	NCI-H460	lung / carcinoma, large cell lung cancer	siRNA
adherent	A549	lung / carcinoma	siRNA, RNA aptemer
mixed	SH-SY5Y	bone marrow / neuroblastoma	siRNA
mixed	PC-12	adrenal gland / pheochromocytoma	siRNA, Plasmid
suspension	Jurkat	peripheral blood / acute T cell leukemia	siRNA
suspension	K-562	bone marrow / chronic myelogenous leukemia	siRNA, Plasmid
adherent	Neuro2a	Mouse neuroblastoma	Plasmid
suspension	THP-1	Human Monocytes/ acute monocytic leukemia	siRNA

2 record of STF into Normal / Primary Cell

Name	tissue / disease	nuecleic asid
Mice Bearing Human Tumor Xenografts		siRNA
Rat Brain Cortex Neuronal Cells		siRNA
Primary Rat Astrocytes		siRNA
Primary Rat Neuronal Cells		siRNA
Primary Mouse Neuronal Cells		siRNA
PMEF		siRNA
HUVEC	Normal Human Umbilical Vein Endothelial Cells	siRNA, Plasmid
Human Retinal Microvascular Endothelial Cells		siRNA
Rat Retinal Ganglion Cells		siRNA
HMEC	Normal Human Mammary Epithelial Cells	siRNA
NHBE	Normal Human Bronchial/Tracheal Epithelial Cells	siRNA
UASMC	Normal Human Umbilical Artery Smooth Muscle Cells	siRNA
NHDF-Neo	Normal Human Neonatal skin fibroblest	siRNA, Plasmid
Primary Human Hepatocytes from PXB-Mice®		siRNA
Chronic Lymphocytic Leukemia		siRNA
Normal Human B1 Cells		siRNA
Human Peripheral Blood CD14+ Monocytes		siRNA
hMSC	Human Mesenchymal Stem Cells	siRNA, Plasmid
mNSC	Mouse Neuronal Stem Cells	siRNA

